MOLECULAR AND FUNCTIONAL STUDIES OF DRUG-PLASMA PROTEIN INTERACTIONS

Masaki Otagiri¹, Hiroshi Watanabe² and Toru Maruyama²

¹Department of Biopharmaceutics and ²Department of Clinical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan

Drugs are distributed in the circulation either freely dissolved in the aqueous phase of the plasma, or bound with plasma proteins forming reversible drug-protein complexes. Hence, protein binding of drugs has a great impact on the pharmacokinetics and pharmacological effects of drugs. Accumulated evidence indicate that drug binding to albumin and α₁-acid glycoprotein (AGP) at low drug/protein molar ratios occurs at few specific and discrete ligand binding sites of both proteins. Therefore, information on the properties of these drug binding sites is important for understanding pharmacokinetically relevant binding phenomena such as displacement between different drugs and the dramatically altered plasma protein binding of some drugs during several disease states as well.¹) Topology analysis of drug binding sites on HSA and AGP determined using various methods, including spectroscopy, QSAR, photoaffinity labeling, site directed mutagenesis and X-ray crystallography will be discussed. In the crystal structures of HSA and recombinant HSA (rHSA), site I is a pocket in subdomain IIA. Some amino acid residues including 242His, 222Arg and 214Trp contribute to the site I ligand bindings. Crystallographic analyses have disclosed the location of site II to be in subdomain IIIA. 391Asn, 410Arg and 411Tyr are important for the binding of site II ligands. Recombinant albumins with point mutations were found to be useful for rapid identification of drug binding sites (Fig. 1). In contrast to HSA, there seems to be no discrete binding sites on AGP, but drug binding occurs at a site with subregions. Trp, Tyr and His residues, especially His97 and Trp120 in the drug binding pockets play important roles in this process. Drug displacement is somewhat complex, due to the involvement of multiple factors. The significant inhibition in serum binding of drugs observed in uremic patients may be explained by a mechanism that involves a combination of direct displacement by fatty acids as well as cascade effects of fatty acids and uremic toxins.

References: